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Abstract. Many learning rules for neural networks derive from abstract objective functions. The weights in those
networks are typically optimized utilizing gradient ascent on the objective function. In those networks each neuron
needs to store two variables. One variable, called activity, contains the bottom-up sensory-fugal information involved
in the core signal processing. The other variable typically describes the derivative of the objective function with
respect to the cell’s activity and is exclusively used for learning. This variable allows the objective function’s
derivative to be calculated with respect to each weight and thus the weight update. Although this approach is
widely used, the mapping of such two variables onto physiology is unclear, and these learning algorithms are
often considered biologically unrealistic. However, recent research on the properties of cortical pyramidal neurons
shows that these cells have at least two sites of synaptic integration, the basal and the apical dendrite, and are
thus appropriately described by at least two variables. Here we discuss whether these results could constitute a
physiological basis for the described abstract learning rules. As examples we demonstrate an implementation of the
backpropagation of error algorithm and a specific self-supervised learning algorithm using these principles. Thus,
compared to standard, one-integration-site neurons, it is possible to incorporate interesting properties in neural
networks that are inspired by physiology with a modest increase of complexity.
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1. Introduction sult in a linear superposition of synaptic inputs at the

soma (Johnstone, 1996; Cash and Yuste, 1998; Cook

Cortical neurons exhibit amazingly complex dendrites.
Their morphologies have spurred a lot of interest, and
many studies investigate processing of synaptic input
within the dendritic tree (Zador et al., 1995; Mainen
et al., 1996; Mainen and Sejnowski, 1996; Carnevale
et al., 1997; Agmon-Snir et al., 1998; Mel et al.,
1998). Some evidence argues for a sublinear interac-
tion of synaptic inputs due to dendritic saturation (Mel,
1993). Other studies suggest a supralinear interaction
due to voltage-dependent conductances (Softky, 1994;
Schiller et al., 2000). Indeed, it has been proposed that
different nonlinear effects cancel each other and re-

and Johnston, 1999). These studies are based on data
obtained in different cortical regions using acute or cul-
tured brain slices. Thus, they cannot be directly com-
pared, and current results do not allow the properties
of dendritic interactions in pyramidal neurons to be
unambiguously resolved under in vivo conditions.

As a consequence, two main lines of investigation
emerged. Some studies concentrate on the dynamics
within single neurons and take into account the detailed
structure of the dendritic tree. Other studies investi-
gate dynamic interactions in larger networks and use
integrate-and-fire neurons or other highly simplified



P1: Vendor

Journal of Computational Neuroscience

KL1432-01 December 5, 2001

208 Kording and Konig

model neurons as basic units. In such neurons all synap-
tic input is summed and only then subjected to a non-
linear transfer function. This single integration site is
usually assigned to the soma resulting in a point-like
neuron without dendritic structure. This is a gross sim-
plification, which nonetheless seemed necessary be-
cause simulations of large networks considering all
neurons in great detail are currently not possible. Here
we argue that considering a modest increase in com-
plexity, a second site of integration, offers a second
independent variable, which allows a larger class of
neural network algorithms to be implemented. Indeed,
many successfully applied neural networks use two
variables per cell. The first variable, called activity,
transmits information in the hierarchy of processing.
The second variable typically stores the derivative of
the objective function with respect to the cell’s input
and is exclusively used for learning.

A prominent example from the domain of supervised
learning is the “backpropagation of error” algorithm
(Werbos, 1974/1994; Rumelhart and McCleland, 1986;
LeCun et al., 1990). For each neuron it calculates activ-
ity as well as the derivative of the globally defined error
function with regard to the neuron’s activity. These two
variables together allow computing updates of synap-
tic weights. In a recent survey of applications of neural
networks (Arbib, 1998), this Igorithm features promi-
nently. Among 26 different methods the backpropaga-
tion algorithm and its closely related cousin, backprop-
agation in recurrent networks, are applied in 13 areas
of a total of 18 areas. With applications in only five
areas the runner up trails far behind. Thus, it is fair to
say (Arbib, 1998) that “Backpropagation is the most
diversely used adaptive architecture.” This has led to
some proposals addressing possible implementations,
and a number of mechanisms have been suggested: a
second network propagating back the errors (Zipser
and Rumelhart, 1990; Tesauro, 1990); global reinforce-
ment (Mazzoni et al., 1991); bidirectional recirculation
in a recurrent network (Hinton and McClelland, 1988);
and contrastive Hebbian Learning (O’Reilly, 1996). In
the latter two approaches early signals carry the activ-
ity, whereas late signals also contain the error signal.
Nevertheless, the common notion is that backpropaga-
tion is a successful algorithm but has no obvious link
to processes of the brain. Indeed, according to Arbib
(1998, p.), “This architecture is an example of ‘neu-
rally inspired’ modeling, not modeling of actual brain
structures: there is no evidence that backpropagation
represents actual brain mechanisms of learning.”
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As a second example, since in many technical appli-
cations as well as in most biological systems labeled
data are scarce, self-supervised algorithms have been
developed. They do not need an external supervisor
but locally generate a supervision signal and have thus
been proposed to be linked more directly to cortical
function. As an example, the Imax algorithms (Becker,
1996) are based on the idea of maximizing the mu-
tual information between outputs of different network
modules. Variants of these algorithms are based on spa-
tial (Becker and Hinton, 1992; Stone and Bray, 1995),
cross-modal (de Sa and Ballard, 1998), or temporal
(Foldiak, 1991) smoothness criteria and also use a sec-
ond variable for each cell containing the derivative of a
local objective function with respect to the cell’s activ-
ity. With respect to self-supervised learning, a number
of possible mechanisms have been proposed as well:
nondriving synapses (Becker, 1996), a nonlocal thresh-
old mechanism (Kay et al., 1998), and a second layer of
neurons comparing two activities (de Sa and Ballard,
1998). A characteristic property of these solutions is
the idea pertinent in the neural network community
that neurons exhibit just one site of synaptic integra-
tion and thus can add presynaptic influences at one site
of synaptic integration only.

Here we explore how known characteristics of pyra-
midal neurons can interact to form a system comparable
to the previously described algorithms and give an al-
ternative proposal how the above principles could be
mapped on physiology. We do not assume that cortex
actually works as a backpropagation machine. Neither
do we try to improve the convergence behavior or mem-
ory overhead of existing algorithms. Instead, we inves-
tigate a possible implementation of an interesting and
widely used algorithm in physiologically plausible net-
work architectures and like to point out new aspects
when thinking about dynamics and function of cortical
networks.

2. Methods and Relevant Biological Experiments

2.1. Integration in the Basal
and Apical Dendritic Tree

The most abundant type of neuron in cerebral cortex,
the pyramidal neuron, is characterized by its promi-
nent apical dendrite. Recent research on the properties
of layer V pyramidal neurons suggests that the apical
dendrite acts, in addition to the soma, as a second site
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Figure 1. The relevant physiology. In vitro data kindly supplied by
M. Larkum (MPI Heidelberg) modified after a figure in (Larkum,
1999b) A: The experimental setup. A neuron is patched simultane-
ously at three positions: the soma (recordings in solid line), 0.450
mm (recordings in dashed lines), and 0.780 mm (recordings in dotted
lines) out on the apical dendrite. B: The effect of inducing an action
potential by current injection into the soma. It travels anterogradly
into the axon and retrogradly into the apical dendrite, where it leads
to a slow and delayed depolarization. C: Injection of a small current
at the apical dendrite does not trigger regenerative potentials and
induces only a barely noticeable depolarization at the soma. D: In-
jection of a larger current into the apical dendrite elicits a regenerative
event with a long depolarization (dotted line). This slow potential is
less attenuated and reaches the soma with a delay of only a few mil-
liseconds (solid line). There, a series of action potentials is triggered,
riding on the slow depolarization. E: Combining a subthreshold cur-
rent injection into the apical dendrite with a somatic action potential
leads to a calcium spike and a burst of action potentials. Source:
Based on Larkum et al. (1999b).

of synaptic integration (Larkum et al., 1999b; Kording
and Konig, 2000). Each site integrates input from a
set of synapses defined by their anatomical position
and is able to generate regenerative potentials (Schiller
etal., 1997). The two sites exchange information in the
following way (see Fig. 1A, modified after a figure
in Larkum et al., 1999b): (1) signals originating at
the soma are transmitted to the apical dendrite by ac-
tively backpropagating dendritic action potentials (Fig.
1A, B, Amitai et al., 1993; Stuart and Sakmann, 1994;
Buzsaki and Kandel, 1998); (2) signals from the api-
cal dendrite to the soma are sent via slow regenera-
tive calcium spikes (Fig. 1D, E), which have been ob-
served in vitro (Schiller et al., 1997) and in vivo (Hirsch
et al., 1995; Helmchen et al., 1999). These calcium
spikes are initiated in the apical dendrites and cause

a strong and prolonged depolarisation, typically lead-
ing to bursts of action potentials (Fig. 1D, E, Stuart
etal., 1997; Larkum et al., 1999a, 1999b). Experimen-
tal studies support the view that excitation to the apical
dendrite is strongly attenuated on its way to the soma
unless calcium spikes are induced (Fig. 1B) (Schiller
et al., 1997; Larkum et al., 1999b). In conclusion, a
subset of synapses on the apical dendrite is able to in-
duce discrete events of strong prolonged depolarization
combined with bursts.

Synaptic efficacy is a function of the temporal struc-
ture of afferent action potentials. They typically either
facilitate or depress (Markram et al., 1997). On presy-
naptic activity facilitating synapses increase their effi-
cacy for a short interval, whereas depressing synapses
react more weakly to presynaptic events within a short
time following presynaptic activity. Thus, highly facil-
itating synapses lead to a strong signal only for bursts;
highly depressing synapses strongly respond only to
trains of single spikes.

To accommodate these results we consider the rate of
action potentials (A) and the rate of dendritic bursts (D).
Both are in general a function of synaptic efficacies for
afferent action potentials (Whpasai, Wapica) and bursts
(Vbasal» Vapicar) depending on the type of synapses in-
volved (bold letters are used to denote vectors, here
the vector of all synapses afferent to the basal and api-
cal dendritic tree of one postsynaptic neuron), and the
respective rates of the presynaptic neurons (Apre, Dpre):

Apost= fi ( Wbasa/Apre, Vbasa/Dpre, Dpost),

where XY denotes the scalar product of X and Y and

Dpost = 9(WapicaiApre, VapicaiDpre, Apost),

where fand g are two transfer functions. Their choice
is given further down in the respective context.

2.2, Input to the Basal and Apical Dendritic Tree

To complete the picture we have to consider which
afferents target the apical and basal dendritic tree, re-
spectively. Although the anatomy of a cortical col-
umn is complicated, some regular patterns can be dis-
cerned. The apical dendrites of the considered layer
5 pyramidal neurons receive local inhibitory projec-
tions and long-range cortico-cortical projections (Zeki
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and Shipp, 1988; Cauller and Connors, 1994). Top-
down projections from areas higher in the hierarchy
of the sensory systems and long-range connections
within the same cortical area strongly terminate in
layer 1, where many apical tufts can be observed
(cf. Salin and Bullier, 1995). This supports the idea
that top-down connections from higher to lower ar-
eas, and long-range lateral connections preferentially
terminate on the apical dendrites. The basal dendrites
of the considered cells receive direct subcortical affer-
ents (e.g., the koniocellular pathway in visual cortex)
in addition to projections from layer 4 spiny stellate
cells. These are the main recipients of afferents from
sensory thalamus or from areas lower in the cortical
hierarchy.

We use the approximation that the bottom-up in-
put targets the basal dendritic tree (Wiop-down,basal = 0
Viop-down,basal = 0), Whereas the apical dendrite inte-
grates top-down information from higher areas and the
same area ( Wbottom—up,apical =0, Vbottom—up,apical =0). We
must note though that this approximation is only par-
tially supported by biological data. It is true that top-
down projections massively target the upper layers of
cortex (Salin and Bullier, 1995), but there are some
connections to the basal dendrites as well. Similarly
bottom-up connections do not exclusively target basal
dendrites but to a certain degree also target the apical
dendrites.

2.3. The Synaptic Weight Update

Experiments on hippocampal slices by Pike et al.
(1999) support the idea that postsynaptic bursting is
essential for the induction of LTP. Furthermore, inde-
pendent experiments support the idea that strong post-
synaptic activity also is necessary in cortex for induc-
tion of Hebbian learning (Artola et al., 1990; Dudek
and Bear, 1993). We infer that bursts and thus cal-
cium spikes can trigger Hebbian plasticity at active
synapses.

At the site of the synapse, bursts and action poten-
tials could trigger synaptic plasticity. Together with
the time course of the presynaptic activity the synapse
can change its parameters. Here we consider V and W
and only changes that are proportional to the presy-
naptic A and D. This yields the following weight up-
date: AW=F4(A, D) Fa(Apre, Dpre), AV=Gq(A, D)
Ga(Apre, Dpre), where the F and G are linear func-
tions. Learning is proportional to presynaptic activity
and burst-rate.

20:19

3. Results

Within the framework outlined above, we investigate
possible implementations of supervised and unsuper-
vised learning rules.

3.1. How to Emulate the Backpropagation
of Error Algorithm

In addition to the formalization described above—
which we think is compatible with experimental
results—we have to make additional assumptions:

e Basal synapses are modified only when calcium
spikes are triggered: AWpasal = 8 Dpost Apre- In con-
trast, apical synapses learn proportional to the post-
synaptic activity according to a conventional Heb-
bian learning rule: AVapicai=B Apost Apre. This re-
sults in symmetric synaptic weighs.

o All basal synapses are strongly depressing (Vpasal
=0), and all apical synapses strongly facilitating
(Wapical=0)'

e The transfer function f of the activity is Apost
=f(WbasaIApre» VbasaIDpre’ Dpost) =1 /(1 + exp(—
WApre)), so that Apst is of [0,1] and the transfer
function g of the dendrite is Dpost =g(Wapical Apre,
VapicaIDpre7 Apost) = (Vapical Dpre)Apost(1 - Apost)-

Given these assumptions, the resulting dynamics are
identical to those of backpropagation, the error § is just
exchanged by the burstrate D, so the system implements
AW ~ §Apre and § =A(1 — A)WS. In essence, errors
are transmitted by bursts via the top-down connections
and processed first in the apical dendrite. The core sig-
nal processing is performed in the soma using action
potentials transmitted in the bottom-up direction. Fa-
cilitating and depressing synapses allow multiplexing
these signals via the same axons.

It has to be noted that these additional assumptions
are speculative. Learning of apical synapses, for ex-
ample, is more likely to be proportional to the burst
rate as well, and the assumptions that synapses depress
or facilitate are clearly not met. The transfer function
for Dpost could be realistic since it has been shown
that increasing the firing rate increases the readiness
of the cell to have calcium spikes. The saturation of
Dpost has not yet been shown but could be imple-
mented with channels that are inactivated by backprop-
agating action potentials. Dpogt is continuous, which
means that we assume the system is noisy enough so
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that the burstrate is proportional to the input; the cell
is a stochastic burster. This is also a weakness of the
proposed system since it implies that the system must
see the stimulus long or often enough for the statistics
of the stochastic burster to even out. Another issue is
that the values of Dpogt in biology are constrained to be
positive; no negative burst-rates would seem possible.
This problem can be overcome by having a base burst-
ing activity; values below lead to decreasing weights,
and values above to increasing weights. But neverthe-
less, it has to be noted that our knowledge of properties
of synapses connecting particular pairs of neurons is
very limited. Indeed, only recently insight has been
gained with respect to specific properties of synaptic
connections of different classes of interneurons (Gupta
etal.,2000). Thus, time will have to show whether some
of the assumptions above, which are questionable, are
outright wrong. On the other hand, if the above assump-
tions are met, the system performs backpropagation of
error.

3.2.  Learning the X-Or Function

The backpropagation of error algorithm received
widespread popularity, as it allows multilayer percep-
trons to be trained, which as opposed to the linear
perceptron (Minsky and Papert, 1969) can approxi-
mate nonlinear functions and solve linearly insepa-
rable problems. Results of training a network with
this algorithm have even been compared with cor-
tical receptive fields (Zipser and Andersen, 1988).
The simplest example of such a nonlinear function is
the two-bit parity or X-OR function. For our simula-
tions we choose § = 2, all initial weights randomly
from (0..1( and simulate the system for 10,000 iter-
ations. In Fig. 2A, B we demonstrate how neurons
with two sites of synaptic integration emulating back-
propagation learn this function. The residual error de-
creases steeply over time, indicating optimization of
the network with respect to the globally defined error
function.

Classical Hebbian learning rules applied to such a
network composed of units with one integration site
cannot learn this task since they approximately search
for the first principal components. In the present frame-
work such a system that is composed of units with
only one site of integration unit is equivalent to mix-
ing the signals targeting basal and apical dendritic tree
for the determination of activity as well as of learn-
ing. As a stricter control we mix signals targeting

B
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Figure 2. Backpropagation algorithm. A: The network layout is

sketched. We consider a three-layer network with a set of input neu-
rons, a set of hidden neurons, and a set of output neurons. B: The
average error of the output neurons averaged is shown as a function
of the iteration. C: The average error averaged over the last 1000 it-
erations is plotted as a function of the influence of the postsynaptic
firing rate onto learning as parameterized by «. The standard error of
the mean determined in 10 runs is about the same size as the circles.

the two sites for determination of the learning only:
AWhpasal = BApre(Dpost + ®Apost). The constant o de-
termines the relative influence of the activity of the
postsynaptic neuron relative to the burst rate. Here,
however, the relative size of the two variables has to
be considered. Initially, they are of the same order
of magnitude. During the simulation the error drops
(Fig. 2B) and is quickly an order of magnitude or more
smaller than the average activity. Thus, a mixing pa-
rameter of 0.01 (for example) is not as small as it
might seem on first sight. Nevertheless, Fig. 2C shows
that performance decays for increasing influences of
the firing rate of the postsynaptic neuron onto synaptic
plasticity.

The error in the cases where the network does not
converge to a correct solution is about 0.05, which is
smaller then the variance of activity by a factor of about
20. The objective function of Hebbian learning, the
detection of the principle components, is mixed with
the objective function of backpropagation learning, the
minimization of the global error. If the cell had only one
site of integration, larger mixing parameters than those
used here seem inevitable. Thus, in the investigated net-
work the emulation of backpropagation learning relies
on the second site of synaptic integration.
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3.3. Self-Supervised Learning

Neurons with two sites of integration also allow imple-
menting self-supervised learning algorithms (Kérding
and Konig, 2000; compare Becker and Hinton, 1992;
Stewart and Sejnowski, 1998). Approaches for self-
supervised learning use two variables per cell to in-
tegrate a learning signal from a spatiotemporal area
larger then the one supplying activating input. So here
we analyze such a system and test whether the same
solutions can be obtained using just one site of synaptic
integration.

We use a physiologically plausible transfer-function:
Apost = H(ApreW)) /A7, where H is the heavyside func-
tion (H(x) =0 for x< 0, H(x) =x otherwise) and A,
is the running average of the activity with a time
constant of 1000. Based on the experimental re-
sult that already weak inhibition abolishes calcium
spikes (Larkum et al., 1999b), we assume strong lo-
cal competition on the level of the generation of cal-
cium spikes. Within each module only in the neuron
with the highest Dpost calcium spikes are triggered.
Dpost = (WApre + oA) = max(WApre +aApost). Synap-
tic plasticity is triggered only by bursts. Cells that have
not learned for an interval T increase their weights to
stabilize the net activity: AW = SDpost(Apre — W)+ T,
We choose 8=0.002, x =0.00001, select all initial
weights randomly from (0..1(and simulate the system
for 10,000 iterations. The network is organized into
streams (Fig. 3A). Streams are connected on the sec-
ond layer. Each stream receives input from a distinct
set of cells (4 by 3). The input position on the abscissa
is randomly chosen and identical in both streams. The
input position on the ordinate is randomly chosen for
each stream, thus there is a correlation in the abscissa
position but not in the ordinate position.

The goal of the network is to extract the coherent
variable and generalize over the incoherent variable.
Thus, in the chosen example the synaptic weights have
to be adjusted such that the correlations between the
higher areas of each stream are maximized. Figure
3B shows the normalized correlation against the it-
eration, as a function of the iteration for one run of
o = 0.08. The network learns to extract the coherent
information.

To control for the relevance of two separate inte-
gration sites, we study a model with mixing signals
targeting the apical and basal dendritic tree. Along the
lines of the control above, a mixing parameter o de-
termines the relative weight of the input to the basal
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Figure 3. Self-supervised learning. A: The used network setup
is shown. B: The normalized correlation (Z(A“Aiz)2 /sqrt
((Z(AHAJI)2)(Z(A12Aj2)2), where numbers denote streams and
i and j individual neurons, averaged over 200 iterations is shown
for one run of « = 0.08. A normalized correlation of one means
that both streams exactly extract the same information. C: The nor-
malized correlation (see text) averaged over the last 200 iterations is
shown as a function of the influence of the firing rate onto learning
as parameterized by a.

dendritic tree in the function describing the synaptic
updates. When « is large, this is equivalent to a one
integration site model for learning but not for the acti-
vation of the neurons. In this sense it is an even stricter
control. Figure 3C shows that increasing the effect of
the postsynaptic activity on learning tampers with the
performance of the system. Learning with just one site
of synaptic integration leads to a tradeoff. If « is small,
the cells are able to correctly learn according to their
locally defined objective. But then they mostly trans-
mit information about nonlocal properties of stimuli
because their activity is dominated by the learning sig-
nal. If « is large, they do not learn correctly but rep-
resent information about local stimulus properties. In
the example considered here, the majority of the cell’s
activity must be determined by the learning signal for
the system to converge correctly. And in this case the
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neuron hardly represents local stimulus properties. So
also in the case of self-supervised learning a two-site
model allows the implementation of some algorithms
that seem unavailable to one-site models.

4. Discussion

In this study we demonstrate that taking into account
a second integration site allows, at a modest increase
in complexity, interesting properties to be incorporated
in physiologically realistic neuronal networks. To our
knowledge, this is the first demonstration that a network
composed of units with two integration sites allows the
implementation of such algorithms.

We proceed to discuss the concept of an integration
site in some more detail. In the widely used integrate-
and-fire model neuron all inputs are summed before
a nonlinear transfer function is applied. Thus, the rel-
ative positions of synapses on the dendritic tree and
potential interactions of inputs in the dendrite are ne-
glected. The neuron may then be described as point-like
with a single integration site. In contrast, a number of
integration sites is taken into account by a X IT-unit.
Here subsets of inputs interact in a multiplicative way
(the IT), before the results are summed (the X). Thus
the intermediate results depend only on disjoint subsets
of afferent signals. In this sense such a model neuron
has as many integration sites as multiplications are per-
formed. The “real” cortical neuron is supposedly much
more complex, and a description by a varying number
of integration sites, albeit better then the one integration
site model, must be considered a rough approximation.

An important question is whether the tradeoff be-
tween representing a stimulus and learning correctly
generally holds for neurons with just one site of synap-
tic integration. Whenever the objective is not exclu-
sively a function of the neuron’s activity (as it is for
ICA and PCA), the learning signal cannot be identical
to the desired neuronal activity. It can only influence
the weights via the one variable, the somatic activity,
and therefore needs to distort this activity. That is why
the system cannot correctly learn and respond at the
same time. This tradeoff is thus a general property of
neurons with just one site of integration.

The theory of graphical systems can help explain
why some algorithmic problems that cannot be solved
by a set number of one site neurons can be solved by
the same number of two site neurons. Systems in which
information flows can be described by directed graphs
(cf. Frey, 1998). Every node of this graph corresponds

to a variable in the system. The variables in our net-
work are the weights, the level of activity, and in the
two sites case also the dendritic potential. Any connec-
tion from one node to another indicates that the first
variable directly influences the second. The graph for
two sites of synaptic integration contains more connec-
tions over which information flows and thus allows a
larger class of functions to be computed. The weight
change, for example, can depend on somatic activity
as well as dendritic potential. At the same time it is
straightforward to have the two sites system emulate
the one site system by appropriately setting the mixing
parameter.

Here we argue that taking into account the dynamics
within the apical dendritic tree results in a description
with two integration sites. Thus, we have to investigate
the quality of such an approximation. Recently a com-
partmental model was used to analyze the initiation of
calcium spikes in the apical dendrite of pyramidal neu-
rons (Schifer et al., 2000). Considering recent results
on channel dynamics, channel densities, and dendritic
morphologies, they could identify factors that influ-
ence the generation of calcium spikes. The dendritic
morphology and the distribution of calcium channels
turned out to be key features in this process. Relat-
ing this with recent experimental results by Liischer
and his colleagues (Berger et al., 2001) suggests that
the influence of synapses targeting the apical dendritic
tree onto the soma are mediated mainly by regenerative
potentials. Thus given the current state of our knowl-
edge a description by two integration sites seems to be
a reasonable description.

Since we are interested in analyzing effects on a net-
work level, we concentrated on new aspects gained by
considering a second integration site. Combining the
results described above with additional assumptions
we show here that neuronal networks might implement
previously proposed unsupervised as well as super-
vised learning rules. Neurons in this framework do not
only integrate both afferent driving activity and an er-
ror signal. They even transmit both variables through
the same axon (Markram et al., 1998). Here we assume
that single spikes transmit the activity and that bursts
transmit error and learning signals.

We do not want to imply that the mammalian cere-
bral cortex literally works like a backpropagation ma-
chine. But we argue that the sometimes-perceived wide
gap between physiologically realistic simulation and
neural networks that successfully solve technical prob-
lems might not be that large after all. Thus, looking
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for inspiration in biological networks and caring about
physiological realism still are possible. In particular,
neurons might transmit information in efferent spikes
above and beyond the instantaneous firing rate. Syn-
chronization relative to the activity of other neurons
(Singer and Gray, 1995; Konig and Engel, 1995) and
the temporal structure of individual spike trains as ex-
pressed by the rate of bursts (Livingstone et al., 1996;
Siegel et al., 2000) are promising candidates for further
research.

In this article, we explored how the mammalian cor-
tex could learn under defined constraints. We argued
that two sites of synaptic integration within each pyra-
midal neuron could allow the implementation of su-
pervised as well as unsupervised learning rules. We
pointed out which type of computations could be per-
formed, with the most interesting aspect being that
two sites of integration allow combining two classes
of algorithms—supervised and unsupervised learning
rules—in a homogeneous architecture. This might be
an important contribution to the superior performance
of biological systems in learning tasks.
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